Identification of a novel mannose-capped lipoarabinomannan from Amycolatopsis sulphurea.

نویسندگان

  • Kevin J C Gibson
  • Martine Gilleron
  • Patricia Constant
  • Germain Puzo
  • Jérôme Nigou
  • Gurdyal S Besra
چکیده

The genus Amycolatopsis is a member of the phylogenetic group nocardioform actinomycetes, which also includes the genus Mycobacterium. Members of this group have a characteristic cell envelope structure, dominated by various complex lipids and polysaccharides. Amongst these, lipoglycans are of particular interest since mycobacterial lipoarabinomannans are important immunomodulatory molecules. In this study we report the isolation and structural characterization of Amycolatopsis sulphurea lipoarabinomannan, designated AsuLAM. SDS/PAGE analysis revealed that AsuLAM was of an intermediate size between Mycobacterium tuberculosis lipoarabinomannan and lipomannan, confirmed by matrix-assisted laser-desorption ionization-time-of-flight mass spectrometry that predicted an average molecular mass of 10 kDa. Using a range of chemical degradations, NMR experiments and capillary electrophoresis analysis, AsuLAM was revealed as an original structure. The mannosyl-phosphatidyl- myo -inositol anchor exhibits a single acyl-form, characterized by a diacylated glycerol moiety, and contains, as one of the main fatty acids, 14-methyl-pentadecanoate, a characteristic fatty acid of the Amycolatopsis genus. AsuLAM also contains a short mannan domain; and is dominated by a multi-branched arabinan domain, composed of an (alpha1-->5)-Ara f (arabinofuranose) chain substituted, predominately at the O -2 position, by a single beta-Ara f. The arabinan domain is further elaborated by manno-oligosaccharide caps, with around one per molecule. This is the first description of manno-oligosaccharide caps found in a non-mycobacterial LAM. AsuLAM was unable to induce the production of the pro-inflammatory cytokine tumour necrosis factor alpha when tested with human or murine macrophage cell lines, reinforcing the paradigm that mannose-capped LAM are poor inducers of pro-inflammatory cytokines.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of a truncated lipoarabinomannan from the Actinomycete Turicella otitidis.

Lipoarabinomannan (LAM) lipoglycans have been characterized from a range of mycolic acid-containing actinomycetes and from the amycolate actinomycete Amycolatopsis sulphurea. To further understand the structural diversity of this family, we have characterized the lipoglycan of the otic commensal Turicella otitidis. T. otitidis LAM (TotLAM) has been determined to consist of a mannosyl phosphatid...

متن کامل

Variation in mannose-capped terminal arabinan motifs of lipoarabinomannans from clinical isolates of Mycobacterium tuberculosis and Mycobacterium avium complex.

The unique terminal arabinan motifs of mycobacterial lipoarabinomannan (LAM), which are mannose-capped to different extents, probably constitute the single most important structural entity engaged in receptor binding and subsequent immunopathogenesis. We have developed a concerted approach of endoarabinanase digestion coupled with chromatography and mass spectrometry analysis to rapidly identif...

متن کامل

The human macrophage mannose receptor directs Mycobacterium tuberculosis lipoarabinomannan-mediated phagosome biogenesis

Mycobacterium tuberculosis (M.tb) survives in macrophages in part by limiting phagosome-lysosome (P-L) fusion. M.tb mannose-capped lipoarabinomannan (ManLAM) blocks phagosome maturation. The pattern recognition mannose receptor (MR) binds to the ManLAM mannose caps and mediates phagocytosis of bacilli by human macrophages. Using quantitative electron and confocal microscopy, we report that enga...

متن کامل

Proteomics and Network Analyses Reveal Inhibition of Akt‐mTOR Signaling in CD4+ T Cells by Mycobacterium tuberculosis Mannose‐Capped Lipoarabinomannan

Mycobacterium tuberculosis (Mtb) cell wall glycolipid mannose-capped lipoarabinomannan (ManLAM) inhibits CD4+ T-cell activation by inhibiting proximal T-cell receptor (TCR) signaling when activated by anti-CD3. To understand the impact of ManLAM on CD4+ T-cell function when both the TCR-CD3 complex and major costimulator CD28 are engaged, we performed label-free quantitative MS and network anal...

متن کامل

Mannose-Capped Lipoarabinomannan from Mycobacterium tuberculosis Induces CD4+ T Cell Anergy via GRAIL.

Mycobacterium tuberculosis cell wall glycolipid, lipoarabinomannan, can inhibit CD4(+) T cell activation by downregulating the phosphorylation of key proximal TCR signaling molecules: Lck, CD3ζ, ZAP70, and LAT. Inhibition of proximal TCR signaling can result in T cell anergy, in which T cells are inactivated following an Ag encounter, yet remain viable and hyporesponsive. We tested whether mann...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Biochemical journal

دوره 372 Pt 3  شماره 

صفحات  -

تاریخ انتشار 2003